Introduction

Our client, DigiClips Inc., is a media content analysis company that records and extracts data from different media sources to make it
searchable for their clients, who might want to locate news clips containing their name, company name, a specific topic, and more.

Problem Statement - The data currently being extracted from the television recordings is only network-provided closed captions. These
captions often miss words or phrases spoken within a broadcast, and the information that was not collected is lost within hours of
recordings.

Solution - This project developed efficient speech-to-text and video-to-text modules that will take television and radio recordings as its
inputs and record the timestamp-location of searchable keywords and phrases of interest in these recordings.

Requirements Uses

Functional Requirements: This system is for use within DigiClips Inc. systems. Clients of

* Speech-to-text must convert mono and stereo audio recordings DigiClips Inc. can use the DigiClips Media Search Engine to
into plain text specifically query key words or phrases extracted from media
Video-to-text must detect multiple fonts/styles of text on recordings in a database.
bottom half of the recording frames
All system results must have proper grammar and spelling DigiClips will use our part of the search engine to increase the

amount of data available to be searched. This will help DigiClips

Non-functional Requirements: clients find information quickly and more accurately.

e System will be built without using any costly API/cloud resources

e System will be built with documentation to explain usage

e System should scale with increased quantity of data

’

Constraints:

e Cannot utilize paid APIs for speech-to-text or optical character
recognition
Developed program must be able to run on an underpowered
computer
System must reliably output within the timespan of the input
audio/video

Speech-to-text
Microservice

Endpoint: / GET
URL Param: filePath
Speech-to-text efficiency HEEDD”EE: JSON

Endpoint: f GET Driver Response: JSON
URL Param: filePath Microservice Body: audio, video

Execution Time (minutes)

S 2 NW sy~ WD

DeepSpeech

o

10 15
Clip Length (minutes)

Process
. _ Frocess FPackage -
Speech-to-text Load audio Split into : grammar Split into . o
Microservice ee:gggech and éﬁtﬁﬁt Eﬂdl]ﬂlr'lt. | GET
punctuation LIF{L F. .
aram: fileFPath

Response: JSON

Speech-to-text Design

Tech: Python, FastAPI, Uvicorn, DeepSpeech, Docker Video

Microservice
This service uses the Mozilla open-source project DeepSpeech to

perform speech-to-text on audio and video files. Upon receiving a
request, the service breaks the file into 20 second chunks and
processes each chunk in parallel.

Overall Design

Our project’s architecture is focused on three microservices to
perform speech-to-text and video text recognition on video files
and speech-to-text on audio files.

We use Docker to simplify the setup of the services on the client’s
&t 4 machine. Any machine with docker installed can run these three
AT T ASHTO A services quickly without complicated dependency installation.

Ml) %NIFERASHTON ' ;._‘7_; ' t(M: ; [=il
ORED et ko Corsparten - Docker also makes networking between services much cleaner.

Video-to-text Design Testing
Tech: Python, FastAPI, Uvicorn, Tesseract, OpenCV, Docker Tech: Python

This service uses OpenCV image morphology/pre-processing
techniques alongside Google’s Tesseract OCR to extract visible text
from frames of TV recordings. Each recording is split into individual
frames, which are then processed, timestamped, and checked for
spelling and grammar errors.

This service mainly uses the python library “difflib” to compare text
that was generated with text that was transcribed by us. This checks
for a few points of accuracy, including case sensitivity, overall
length, and punctuation.

